Laser Classification Guidance The laser safety classifications below follow the current version of the European Standard <u>BS EN 60825-1 Laser Radiation: Safety Advice.</u> | Class of | Hazard Information | Summary of Control Measures | |----------|--|--| | Laser | No risk to eyes or skin. | | | Class 1 | Beam radiation can be visible, invisible or both. Safe for accidental viewing under all operating conditions including use with optical viewing instruments. Is not safe for deliberate, long term viewing. Class 1 also includes high power lasers that are fully enclosed so that no radiation is accessible during use. | No control measures required for normal use. Note – precautions may be necessary for service work on embedded laser products. | | Class 1M | No risk to the naked eye or skin. Viewing with optical instruments may be dangerous. Beam radiation can be visible, invisible or both. Safe for viewing directly with the naked eye. Eye injuries may occur if viewed with an optical instrument. | Prevent direct viewing with magnifying optics. | | Class 2 | No risk to the naked eye for short time exposure (including use of optical viewing instruments). No risk to skin. Lasers where the beam is in the wavelength range of visible radiation (400 – 700nm). Safe for accidental viewing under all circumstances because of the eye's natural aversion response to bright light. Not safe for intentional long term viewing where this involves overcoming the natural aversion response. Safe for viewing with optical instruments. | Do not stare into the beam. Do not direct the beam at people or into public areas. | | Class 2M | No risk to the naked eye for short time exposure. Viewing with optical instruments may be hazardous even for a short or accidental exposure. No risk to skin. Lasers where the beam is in the wavelength range of visible radiation (400 – 700nm). There is a possibility that the radiation may contain an invisible element. | Do not stare into the beam. Do not direct the beam at people or into public areas. Terminate beam at the end of useful path with a non-specular beam stop. | | | Safe for accidental viewing with the naked | | |-----------|--|--| | | eye because of the eye's natural aversion | | | | response to bright light. | | | | May be hazardous for viewing with optical | | | | instruments, even when the time exposure is | | | | short or accidental. | | | | Low risk to eyes. No risk to skin. | Do not stare into the beam. | | | Lasers where the wavelength of the beam is | Do not direct the beam at people or into | | Class 3R | greater than 302.5nm emitting between 1 | public areas. | | Class SIV | and 5mW. | Must be recorded on the University's Laser | | | Eye injuries could result from intentional | Register. | | | beam viewing. | | | | Medium to high risk to eyes. Low risk to skin. | Where reasonably practicable engineering | | | Diffuse reflections likely to be safe. | means should be used to reduce the laser | | Class 3B | Intentional and short exposure | class to a totally enclosed Class 1 laser | | | accidental beam viewing will result in | product. | | | eye injury. | The use of any Class 3B or Class 4 laser | | | VERY DANGEROUS | without interlocked enclosure will require a | | | Highest Power class of laser with no | written Scheme of Work. Even with an | | | upper limit. | enclosure written procedures will be | | | Includes both visible and invisible beams | necessary if the user is involved in any alignment procedure that require over-ride of | | | with no upper limit. | interlocks. | | | Eye and skin hazard at all wavelengths. | Class 3B and Class 4 laser products require the | | | Diffuse reflections likely to be | control of access to the area where the laser | | | dangerous. | is operated by the use of a remote interlock, | | Class 4 | Capable of setting fire to materials onto | the use of key control, emission indicators, | | | which the beam is directed. | beam shutter, removal of reflective surfaces | | | | that could be struck by an errant beam, beam | | | | enclosures wherever practical. | | | | The use of eye protection and protective | | | | clothing as appropriate, training of staff and | | | | the appointment of a Laser Safety Officer. | | | | Must be recorded on the University's Laser | | | | Register. | ## Notes: - When purchasing a new Class 3B and Class 4 laser or laser product departments must complete a <u>Laser</u> <u>Registration Form.</u> This needs to be sent to the University Laser Safety Officer, who will record the details on the laser register. - 2. Risk assessments should be carried out before using a laser. Class 3B and Class 4 products must not be used without carrying out a risk assessment to determine the control measures necessary to ensure safe operation. - 3. Fitting external optics that decrease beam divergence may affect classification. - 4. The <u>BS EN 60825-1</u> standards apply equally to lasers and light emitting diodes (LED). LEDs are usually in the lower classes and are not normally very hazardous, although there are exceptions. - 5. Classes 1M and 2m broadly replace the old class 3A and certain 3B laser classifications.